Print a spiral pattern for the given size. If input is zero, print -1

**Input Format**

The input consists of a single integer n representing the size of the square matrix (n x n).

**Constraints**

1 <= n <= 100: The size of the matrix is between 1 and 100 (inclusive).

**Output Format**

The program should output the elements of the matrix in a spiral order, starting from the top-left corner and moving in a clockwise direction.

**Example Input/Output 1:Input:**

5

**Output**

1 2 3 4 5

16 17 18 19 6

15 24 25 20 7

14 23 22 21 8

13 12 11 10 9

**Example Input/Output 2:Input:**

3

**Output:**

1 2 3

8 9 4

7 6 5

**Example Input/Output 3:****Input:**

0**Output:**-1

```
def print_spiral_pattern(size):
if size == 0:
print(-1)
return
# Initialize the matrix with zeros
spiral_matrix = [[0 for _ in range(size)] for _ in range(size)]
# Initialize variables for the boundaries and the current number
top = 0
bottom = size - 1
left = 0
right = size - 1
num = 1
while num <= size * size:
# Move from left to right
for i in range(left, right + 1):
spiral_matrix[top][i] = num
num += 1
top += 1
# Move from top to bottom
for i in range(top, bottom + 1):
spiral_matrix[i][right] = num
num += 1
right -= 1
# Move from right to left
for i in range(right, left - 1, -1):
spiral_matrix[bottom][i] = num
num += 1
bottom -= 1
# Move from bottom to top
for i in range(bottom, top - 1, -1):
spiral_matrix[i][left] = num
num += 1
left += 1
# Find the maximum width of any number in the spiral matrix
max_width = len(str(size * size))
# Print the spiral pattern
for row in spiral_matrix:
for num in row:
# Print each number with the appropriate spacing
#print(f"{num:{max_width}}", end="\t")
print(num,end="\t")
print()
# Test the function
size = int(input())
print_spiral_pattern(size)
```